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We present results of a Monte Carlo simulation of the kinetics of ordering in the 
two-dimensional nearest-neighbor Ising model in an L x M geometry with two 
free boundaries of length M~> L. This model can be viewed as representing 
an adsorbant on a stepped surface with mean terrace width g We follow the 
ordering kinetics after quenches to temperatures 0.25 ~ TIT c ~ l starting from a 
random initial configuration at a coverage of O =0.5 in the corresponding 
lattice gas picture. The systems evolve in time according to a Glauber kinetics 
with nonconserved order parameter. The equilibrium structure is given by a 
one-dimensional sequence of ordered domains. The ordering process evolves 
from a short initial two-dimensional ordering process through a crossover 
region to a quasi-one-dimensional behavior. The whole process is diffusive 
(inverse half-width of the structure factor peak 1/Aql I oc x/~), in contrast 
to a model proposed by Kawasaki et al., where an intermediate logarithmic 
growth law is expected. All results are completely describable in the picture of 
an annihilating random walk (ARW) of domain walls. 

KEY WORDS: Adsorption on stepped surfaces; annihilating random walk; 
kinetic Ising model; Monte Carlo simulation; quasi-one-dimensional ordering 
kinetics; stochastic processes. 

1. I N T R O D U C T I O N  

T h e  o r d e r i n g  k ine t ics  at  surfaces  has  been  of  l o n g - s t a n d i n g  theo re t i ca l  

in te res t  (for rev iews  see refs. 1 6) a n d  has  a lso  been  the  a im  of  exper i -  

m e n t a l  inves t iga t ions .  (7 12) T h e  u n d e r s t a n d i n g  of  these  p rocesses  is a lso  of  

g rea t  t e c h n o l o g i c a l  i m p o r t a n c e  in m a t e r i a l  sc ience for q u e s t i o n s  c o n c e r n i n g  

ca ta lys is  a n d  co r ro s ion ,  for ins tance .  W h i l e  on  an ideal  t w o - d i m e n s i o n a l  

subs t r a t e  of  inf ini te  e x t e n s i o n  the  c lus te r  size g rows  as x/- t ,  where  t 
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measures the time after the adatom adsorption into an initially completely 
random configuration, deviations from this behavior are expected for non- 
ideal surfaces showing defects, for example, surface steps. In previous work 
it has been shown that even a simple model for perfectly regular surface 
steps shows a rich variety of ordering phenomena already in thermal 
equilibrium j13 16) The kinetics of this ordering process can be expected to 
show the usual signature of two-dimensional coarsening at the beginning 
and then a crossover to a quasi-one-dimensional behavior. For ordering 
processes which can be treated as being quasi-one-dimensional (as a result 
of geometry as here or because of highly anisotropic interactions) Kawasaki 
and co-workers have developed a theory describing the ordering domains 
as an ensemble of interacting kinks and antikinks. ~17-2~ In this model the 
walls move under the influence of an exponentially decaying deterministic 
force between the walls and an additional stochastic force. They argued 
that for an intermediate time one could neglect the influence of the 
stochastic force, which would then lead to a logarithmic growth law of the 
mean domain size. We will show that this theory does not apply to our 
model, but that instead a description with a purely stochastic wall move- 
ment in the framework of annihilating random walk (ARW) (21-29) is in 
complete and detailed agreement with the ordering kinetics our model 
exhibits. In Section 2 we explain the model and the simulation technique; 
in Section 3 we discuss a mean field approximation of the ordering kinetics 
and the qualitative predictions one can derive from it. Several alternative 
measures for the mean domain size and their interrelations are discussed in 
Section 4 and applied to the analysis of the growth behavior of the 
domains in the two-dimensional regime in Section 5 and to that of the one- 
dimensional regime in Section 6. Section 7 finally gives our conclusions. 

2. M O D E L  A N D  S I M U L A T I O N  T E C H N I Q U E  

We study a two-dimensional nearest-neighbor Ising model which can 
be defined with the lattice gas Hamiltonian with the occupation numbers ci 

~H=~ E cicj+e Z C~+~e Z ci (1) 
(O') bulk edge 

The corresponding magnetic Hamiltonian Ice= (1 + s/)/2] is given by 

~H= - J  Z sisj+h Z si+he ~, si 
( ~ )  bulk edge 

(2) 
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with 
,:b 

J =  - - -  (3) 
4 

h = rb + - (4 )  
2 

3 ~e 
he=-4,~ + y  (5) 

where we confine ourselves to the case J > 0  and h = h e = O .  (16) In the 
thermodynamic limit L, M--* co the system is the usual two-dimensional 
Ising model with a critical coupling Jc = (In 1 + ,~/~)/2. For fixed terrace 
width L and M--* co the system is quasi one-dimensional and for small 
enough temperatures breaks up into a sequence of domains of size <3~ 
~lt = ~,fL exp ( f in tL /kBT) ,  where fint is the excess free energy of a domain 
wall. The static finite-size and critical properties of this model have been 
investigated in detail in a series of papers. (13-~6~ We follow the approach 
to this equilibrium configuration starting from a homogeneous T =  co 
configuration, 

1 
P(Sl ,  s2 ..... SLM, O) = L M  (6) 

The kinetics applied is the single-spin-flip Glauber kinetics using 
Metropolis rates, 

LM 

~,P(Sl ..... s/ ..... SLM, t ) =  ~ W(--s+--*sj) P(sl,..., -s+,..., SLM, t) 
j=1  

LM 

- ~ W(s+-, - s+) P(s,  ..... sj,..., SLM, t) (7) 

W( - s / - *  s/) = _1 min(1, exp( - - ~ A H ( s l  ,..., SLM))) 
T 

All observables are averages over typically 1000 realizations of the Markov 
chain defined by Eq. (7). 

3. M E A N  FIELD A P P R O X I M A T I O N  FOR THE KINETICS 

Let us now first try to get a qualitative understanding of the quasi- 
one-dimensional phase of the ordering process by looking at a mean field 
approximation of the kinetic equation (7). The ordering process in this 
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stage will be determined by the kinetics of domain walls. We will substitute 
the value of the spin variable s(i, j) by 

1 L - - 1  

= ~-o s(i, j) s(i, j) --* mi -~ J= (8) 

and approximate the energy change AH as being only dependent on mi. 
This changes (7) to a master equation for the row magnetizations mi and 
by performing a Kramers-Moyal expansion in the inverse width of the 
strip (proportional to change of mi due to a single spin flip), one arrives 
at a Fokker-Planck equation, 

M M 

8tP({m },t)= ~ 8mk(U'~P)+�89 ~ 82k(DkP) (9) 
k = l  k = l  

where 

U'k=(l+m~)min(1, exp(-2JI(4-2)  m~+8~m~]t ) 

2 --(1--mk)min(1, expf2J[(4---L) mk+O~lmk]) ) 

exp I- 
2 (1, exp 

(lO) 

(11) 

This equation is highly nonlinear in the row magnetization and its 
variations along the strip. Each row magnetization changes according to a 
local potential Uk(mk_l,mk, mk+~) depending on the magnetization of 
the neighboring rows and under the influence of a diffusion coefficient 
Dk(rnk_~,mk, rnk+l) of similar form. In the case of a homogeneous 
magnetization mk = m, Vk, the mean field critical temperature of the finite 
strip can be read off as the temperature where the kinetic potential U(m) 
develops a double-well structure, 

2 MF (12) )-  Tc (L)=L T C ((30 M F  

in qualitative accordance with the MC simulations. (13) A qualitative 
analysis of the potentials Uk allows us to identify the kinetics that will 
result from such a Fokker-Planck equation. First of all, since the row 
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magnetization has to change from msp to --msp in a finite number of steps, 
the potentials allow for a stable multikink solution of the Fokker-Planck 
equation. When one looks at a row magnetization mk whose neighbors are 
mk_l=msp and m k + l - - - - m s p  (at low temperatures the width of the 
domain walls will approach one lattice spacing) the corresponding poten- 
tial shows the stable values ___msp separated by a barrier (see left side of 
Fig. 1). Such an isolated domain wall will therefore undergo an activated 
diffusion process. On the other hand, a row with m~ = - msv and neighbors 
mk_ ~ = msp- mk+ 1 experiences a strong drift toward msp (right side of 
Fig. 1). Therefore adjacent domain walls attract each other across a 
distance equal to the width of the walls and annihilate on contact. 

It is also quite instructive to look at the Langevin equation corre- 
sponding to the thus derived Fokker-Planck equation close to T c where 
one can expand the potentials and the diffusion coefficients in powers of 
T -  T c and where we will furthermore perform a continuum limit, 

c~,m(x, t)=V(m--~oo+~ M 3  1 2 a 2 m ) +  (D[m])~/2 [(x, t) (13) 

with the kinetic coefficient 

F = 8 ( 1 - 2 ) ( j - J c )  (14) 

+m: 0 0 +m. 0 0 0 0 

I i I, r I 
k 

I I k~- 

-msp 0 0 Q -rnsp �9 

g 
:D 

-0.50 

-0.54 
/L g 

-0.58 
-1.0 0.0 1.0 1.0 

m k 

10 __ 
-1.%.o o'.o 

m k 

Fig. 1. Kink configurations and the corresponding mean field drift potential for magnetiza- 
tion mk. (Left) Isolated wall at position k; (right) two walls meeting at position k and 
annihilating on contact. 
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the equilibrium magnetization 

M 2 J -  Jc 
0 - 4(1 - 2/L) j2 [ 1 - (8/3)(1 - 2/L) J] 

the diffusion coefficient 

D[m]=4{1--4(1--2) jm+64(1--2) 2 

x I l - ~ ( l - 2 )  j]m3-4jO2xm } 

and a Gaussian white noise 

j2 

(15) 

(16) 

(if(x, t ) )  = 0, (r  t) r t ' )> = a(x--.x') a ( t -  t') 

This equation only has stationary one-kink solutions of the form 

(17) 

m k i n k  = M o tanh x_ (18) 

and is the starting point for Kawasaki's (~7'18) derivation of a kinetic 
equation for the position of the kinks showing an exponentially decaying 
interaction between adjacent domain walls. This interaction gives rise to an 
intermediate growth law for the domain sizes 

(l(t)) oc In t (19) 

if one neglects the stochastic forces. One should note, however, that this 
long-range interaction between the domain walls is created in the above 
analysis of our system by performing the continuum limit. The discrete row 
magnetizations reach their equilibrium values across a domain wall in a 
finite number of steps, leading to an interaction between adjacent kinks of 
strictly finite range. Consequently, the discrete equations have stationary 
multikink solutions, in contrast to the continuum treatment. The ordering 
process would just freeze without the stochastic forces. This discrepancy is 
one of the reasons Kawasaki's treatment is not applicable to the ordering 
kinetics in our system, as we will show in the following sections. This will 
hold true also in other cases where the discreteness of states cannot be left 
out of the description. The other reason is connected with this one. Since 
the coupling constants of the spins is the same parallel and perpendicular 
to the strip, the minimal domain size l(t ..... ) in the regime of one-dimen- 
sional ordering l(t ..... ) oc L is much larger than the interaction range 



Ordering Kinetics in Quasi-1D Ising-Like Systems 215 

t = 5 MCS 
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Fig. 2. Four snapshots at the indicated times of a sample realization of the stochastic 
domain growth kinetics. Plus spins in black. There are periodic boundary conditions in the 
long direction. 

~. oz x ~ "  In the case of strictly finite interaction range there can be no time 
scale on which the influence of the stochastic force on the movement of the 
kinks is negligible. 2 

To summarize, the mean field treatment shows that we will have to 
expect a kinetics describable by domain wall diffusion of isolated walls and 
a fast annihilation process of walls approaching each other to within a 
distance equal to the width of the walls. 

4. M E A S U R I N G  T H E  D O M A I N  S IZE  

In Fig. 2 we show snapshots of a typical stochastic realization 
of the ordering process in the early two-dimensional stage t =  5 MCS 
and the later quasi-one-dimensional stage t = 30 MCS, t = 90 MCS, and 
t = 200 MCS. A domain wall in this picture would be the boundary of a 
cluster of, say, plus spins which reaches from one side of the strip to the 
other. The position of this domain wall is defined as its average posi- 
tion along the strip. We furthermore have to distinguish between the 
bulk of a domain wall and the domain wall. One can get an estimate for the 
thickness of the domain walls by treating them in an SOS approximation. 

2 This qualitative behavior is also expected for quasi-one-dimensional ordering in three- 
dimensional systems if the interaction is isotropic. 
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The result is ~ = (2L) V2 e x p ( - J )  and shows the random walk character of 
the wall. Using this result, we define the bulk of a domain to be the region 
xi+ ~ <<,x<~xi+l- 4, where xi and x~+l are the positions of the bounding 
domain walls. Now we can define the mean squared magnetization inside 
the domains by 

<m2} = I (  ~i Imil ~k ~' l i  li) 2 } (20) 

where the magnetization inside one domain is given as 

' ~ j i n  domain i Sj (21) 
rni- L(l i-  24) 

During the two-dimensional early stages of the ordering process this mean 
squared magnetization thermalizes and reaches the equilibrium value 
around the crossover time to the quasi-one-dimensional behavior. 

The above geometrical considerations allow for two ways of defining 
the mean domain size. If we take the angular brackets ( . . .  } to denote an 
average over the stochastic realizations of the ordering process and the 
square brackets with an index k [ . . .  ]k to denote an average taken in the 
kth  realization we can define the mean domain size as 

M 

l~(t)= ( I / ]k} = ~ IP(I, t) (22) 
/ = 1  

where P(l, t ) =  (Pk(l, t)} is the average domain size distribution. An 
alternative definition uses the mean number of domain walls 

M 12(t) = (23) 
N(t) 

Since [/]k = MINk one easily derives 

t, 
,== \ \  < [ l ]~> / /  

<N 2 } - (N~} 2 
,~ <Nk} 2 >/0 (24) 

Both definitions give rise to self-averaging observables and lead to 

Al 1 
- f  ~ (MNite~)l/2 (25) 

where Niter is the number  of realizations of the Markov chain. This 
behavior could be nicely seen in our simulations. Furthermore,  the exact 
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asymptotic behavior in 1/M can be calculated by resorting to the annihilat- 
ing random walk as an asymptotically equivalent model, but this will be 
discussed in more detail in a separate publication. (36) 

Let us now make contact with experimental accessible methods to 
measure the domain size. One such quantity is the incoherent dynamic 
structure factor measured, for instance, in LEED or neutron scattering 
experiments, 

S(q, t) = ~ ~ s(x, t) exp(iq �9 x) 2 (26) 

Most notably, its value at the peak at q = 0 is given by the mean squared  
magnetization in the whole system, 

f(x ~ 02/ (m2) ( t )  = s(x, t) =S(O, t) (27) 

The peak height itself is only an approximate measure for the domain size 
and we now want to relate it to the more microscopic definitions given 
above. Suppose we are looking at the later stages of the ordering process 
in the kth realization of the Markov chain. There are N~ domains of length 
l i and magnetization rn~ which we furthermore assume to be thermalized, 
m~ = _+ m r. The overall magnetization in the k th  realization is then given 
as 

Nk 1 
mr  ~ ( _ l ) i / i  (28) 

m k  = - - M  i=o 

and the mean squared magnetization as 

2 Nk--1 
m 2 1 Y l  T 

i , j=O 

2 Nk i 
l/glT r =M2NK ~ ( - l )  ( [ l i l i + r ] k -  [ l ]  2 ) (29) 

r=0 

Here we use a periodic numbering of the domains and the domain length 
correlation function is independent of i after averaging with the distribution 
for the kth realization. In a separate paper (361 we will discuss these correla- 
tions in more detail with respect to the ARW, but let us here suppose that 
the correlations vanish for r ~ 0, which after averaging over the stochastic 
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realizations leads to a relation between the mean squared magnetization 
and the domain size as measured by 12: 

2 mT 
< m 2 > = - ~  ~G 

(30) 
1 (  2 2 U ]~- [l]k\ 

/ 

Figure 3 is a test of this relation for a low temperature T=O.5Tc and 
several values for the width of the system. After a stronger initial time 
dependence the ratio of the two sides of Eq. (30) is more or less constant 
and equal to 1 to within 10%. The discrepancy almost is within the 
experimental uncertainty for the determination of the mean squared 
magnetization (5 %) and the mean squared magnetization inside a domain 
(2%).  This means that for the system size under study, M =  1000, the 
correlations between adjacent domain sizes are not very important.  

Finally, there is the inverse of the half-width of the structure factor 
peak 1/AqH, which is a measure for the size of correlated spin clusters dur- 
ing all of the ordering process. For  short times where the kinetics is two 
dimensional and does not feel the width of the strip both half-widths Aqt I 
and Aqa are identical and measure the size of two-dimensional growing 
clusters and in the quasi-one-dimensional regime Aql t measures the size of 

1.6 

1.4 

1.2 

E 
V 

1.0 

N A 
E 
v 0.8 

0.6 

O L = 1 0  
r q L = 1 4  
O L = 1 8  
A L  = 22 

~ O O E ] D E ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  

0 � 9  0 0 0 0 

o 1;0 20o 30o 4;0 5;0 6oo 
t 

Fig. 3. Test of the relation between the mean squared magnetization in the system <m2>, the 
mean magnetization inside a domain <rn2r>, and the mean domain size as measured by the 
mean number of domain walls l 2 . Different symbols stand for different widths of the strip as 
given in the figure. 
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the domains. During the whole ordering process we can get the dynamic 
structure factor from a 2-dimensional Fourier transform of the spin pair 
correlation function properly taking into account the periodic boundary 
conditions along the strip and the finite extension perpendicular to it. But 
in the late stages it is easier to obtain the dynamic structure factor from the 
domain size distribution. So let us assume a one-dimensional structure of 
row magnetizations mj. Following a derivation given by Kawasaki, r the 
dynamic structure factor is then given by 

S(q) = (M1-----5 ~ mj exp(iq/) 2> 

1 
= M2 ~ (mj m k > exp[iq( j -  k)] 

jk 

1 
- 4M 2 sin2(q/2 ) ~ ((mj+ 1 - mj)(mk+ 1 - ink)> exp[iq( j -  k)J 

jk 

where the last equality holds due to the periodic boundary conditions. Let 
us now furthermore assume that the domain magnetizations have reached 
their equilibrium value and that we have sharp domain walls, 

m~+l--mk =2mr ~ (--1) r 6 k . . . .  (31) 
r 

where xr is the position of the rth domain wall. Assuming furthermore that 
adjacent domain sizes are uncorrelated and that the number of domains in 
the system is large, one derives 

2 

S(q)-M2sin2(q/2 ) ~ ( ( -  1)r+" ~j, xr 6k, Xs ) exp[iq( j -k)]  
jk , 

l (  )> mT 
-M2sin2(q/2 ) Nk 1+9~2 ~ (--1)ar[exp(iql)]~ r 

~ r > O  

=m__ Z2 \/le l 2 l_l[exp(iql)]kl2 \ (32) 
M sinZ(q/2)l 1 + [exp(iql)]kl2/ 

For q not to small one can furthermore use the self-averaging properties of 
the domain size distribution to substitute the averages in a single realiza- 
tion of the Markov chain, [ --. ]k ,  by an average with the mean domain 
size distribution, ( . - .  >. 

2 S(q) mr 1 -](exp(iql)>[ 2 (33) 
= ~  i sin2~-2"~ ~ ~ 7 - ~ i ~ ) > 1 2  
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Fig. 4. Comparison of the dynamic structure factor as measured by a Fourier transform of 
the spin pair correlation function (open circles) and by a Fourier transform of the domain size 
distribution (full curve). The time chosen belongs to the regime of the one-dimensional 
ordering. 

If the mean domain size l is much larger than the domain wall thickness, 
we can approximate sin2(q/2)~ q2/4 and recover the result by Kawaski/iv) 
Figure 4 presents a comparison of the dynamic structure factor obtained 
from the spin pair correlation function to that obtained from the mean 
domain size distribution. The parameters are chosen such as to make the 
approximations made in the derivation justifiable and we see that the two 
curves show only a small difference at the smallest q values. 

In the next two sections we will analyze the ordering process in terms 
of the different length measures discussed here and their interrelations. 

5. T H E  R E G I M E  OF T W O - D I M E N S I O N A L  G R O W T H  

The growth of the small two-dimensional clusters in the beginning is 
curvature driven and leads to a diffusive growth of the mean size of the 
two-dimensional clusters l'(t) w_ x/7. (33"34) This behavior will cross over to 
quasi-one-dimensional growth when the mean cluster size is equal to the 
width of the strip t ..... ~: L 2. The two-dimensional growth and crossover to 
one-dimensional behaviour are nicely seen in Fig. 5, where we show the 
dynamic structure factor for three different times. At short times it shows 
a symmetric peak the width of which decreases with time. At intermediate 
times the peak gets asymmetric and finally there is no structure left in the 
direction perpendicular to the strip and only S(qll ,q•  ) contains 
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structural information. In this regime the mean squared magnetization is 
proportional to the area of the cluster [ < m 2 > ( t ) ]  in o< l'(t), and one can 
get a nice scaling plot by plotting S(qlll', q~ = O)/<m2>(t)  against qlll'(t). 
This is all just standard two-dimensional behavior. During this same period 
the mean squared magnetization inside a domain approaches its equi- 

-~ 0 I 3 
3 

- qll 
q~ 

(a) 

0 . 0 1 ~ ~  
+'~ O. OO5 T~ ~9 

3 0 1 2  

q~ 

(b) 

0 . 0 4 ~ _ 3  -2 -i ~ 
T~- O. 02 

3 
o i 2-'7~--_~3-2-i~ 
q• 

(c) 

Fig. 5. Dynamic structure factor for the early stages of the ordering process. (a) t = 5 MCS 
shows a two-dimensional coarsening at the beginning. (b) At t = 2 5  MCS the dynamic 
structure factor is asymmetric as the correlation length ~x approaches its limiting value L. 
(c) For t =  587 MCS there is only structure along the strip showing up at q• =0 .  
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librium value. We know that we have to expect a crossover time propor- 
tional to L 2, so let us assume the following crossover scaling 

2 t (mZr(t)) = m T f  (~-~) (34) 

where the scaling function f should have the following limits: 

f ( x ) ~ c x  for x ~ 0  

f(x)  ~ 1 for x --. oe 

Figure 6 shows the expected scaling behavior for a set of temperatures and 
strip widths given in the figure caption. The three different sets of data are 
for the three different temperatures used in the plot. The function f of 
course contains a temperature-dependent rate constant. The data for the 
lowest temperature furthermore asymptotically approach the highest value 
for the equilibrium magnetization. The raw data for the temperature 
dependence of this quantity suggest a crossover time of around 1.5L 2. 

Let us now look at the time dependence of the length scales defined by 
1/dql I and (m 2) which are applicable both in the one-dimensional and in 
the two-dimensional regime. Figure 7 shows them plotted against x/t-. The 
inverse width of the structure factor, which is the direct measure of the size 
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Fig. 6. Relaxation of the mean squared magnetization inside a domain plotted against the 
scaling variable t /L  2. The full curves for T =  0.91Tc are for the system sizes L = 10, 14, 18, 22, 
the long-dashed curves for T = O . 6 7 T  c are for L = 7 ,  10, 13, 16, 25, and those for T = O . 5 T  c 
are for L = 10, 14, 18, 22. 
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Fig. 7. Mean domain size as a function of time as mesured by the mean squared magnetiza- 
tion in the system (open circles) and the inverse half-width of the structure factor peak (open 

fits with a ~ dependence. For the inverse half-width this holds in squares). The curves are 
the two-dimensional and the one-dimensional regime. The mean squared magnetization in the 
two-dimensional regime would be proportional to t. There is no evidence for a logarithmic 
growth of the characteristic lengths at intermediate times. 

of correlated spin clusters in both regimes, shows a nice linear dependence 
on xfT. Only the slope changes between the two regimes, reflecting a 
changing rate constant. But also the mean squared magnetization is 
describable by a linear time dependence in the two-dimensional regime 
(parabolic shape at small t in the plot) crossing over to a dependence 
linear in , ~ -  in the quasi-one-dimensional regime. There is no convincing 
evidence for an intermediate logarithmic behavior. There is, however, a 
compatibility with a logarithmic behavior for times around the crossover 
time, ~s2) as shown in the inset of Fig. 8. This would correspond to the 
logarithmic growth law predicted in the picture of interacting kinks and 
antikinks in the work of Kawasaki  and co-workers. If we, however, com- 
pare the domain size distribution at this time t =  150 MCS with the one 
predicted by the model of Kawasaki  (full curve in Fig. 8), we find severe 
differences. The behavior for domains large compared to the mean domain 
size is described correctly, but this region is completely determined by 
having a Poissonian starting distribution (as is natural for domains created 
by a random two-dimensional coarsening along the strip) and a self-similar 
growth law. It is for the small domain sizes that the actual growth law 
matters. And here we definitely do not see a cutoff domain size and 
consequently our peak height is reduced with respect to the prediction of 
Kawasaki 's  model. The broken curve in Fig. 8 is a Monte Carlo simula- 

822/73/1-2-15 
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Fig. 8. Scaling plot of the domain size distribution function as measured in the Monte Carlo 
simulation of the Ising model (open circles) compared to the prediction of the theory of 
Kawasaki (full curve) and the simulation of an annihilating random walk of domain walls 
with a finite width which was adjusted to give the ideal matching (broken curve). 

tion of a slightly modified ARW. We have included in the simulation the 
effect of a finite domain wall thickness (3 = 4), which corresponds to the 
fact that in the Ising simulation two domain walls annihilate when their 
outermost points touch and not when there mass centers coincide. There is 
a perfect agreement between the ARW result and the result of the Ising 
simulation showing that the whole ordering process is diffusion controlled. 
There is no time regime where we could neglect the influence of the 
stochastic forces or detect an evidence of domain walls interacting with an 
exponentially decaying potential. As already discussed in Section 2, this 
might be due to an intrinsic difference between a model with discrete states 
and a theoretical description that uses a continuum approximation. We 
will find further prove that the ARW is the right description for the 
ordering process in our model when we now switch to the behavior in the 
one-dimensional regime. 

6. THE REGIME OF O N E - D I M E N S I O N A L  ORDERING 

Figure 9 shows the time dependence of the mean domain size as 
measured by ll(t), i.e., the mean distance between the center positions of 
domain walls. There is a clear proportionality to ~ starting in the 
crossover region between two-dimensional and one-dimensional growth 
behavior and holding as long as the overall magnetization in the system is 
not to close to its equilibrium value . There the self-similar growth law 
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Fig. 9. Mean distance between adjacent domain walls for a set of temperatures indicated in 
the figure. The asymptotic straight lines are used to determine the diffusion coefficient of the 
domain walls. 

would no longer hold and one gets an equilibrium domain size distribution 
maintained by domain wall annihilation and creation. The square root 
behavior for all times is also the prediction of the ARW, for which one 
derives 

l(t) = (4rcpt) t/z (35) 

where l ip is the rate of displacement of one domain wall. For low tem- 
peratures one can derive a prediction for this rate. The domain walls will 
then preferably run straight across the terrace. To move such a wall one 
needs a nucleating event where one spin in an adjacent row is flipped. This 
is most easily done for the spins at the edges of the terrace, where it creates 
only two broken bonds. Thus the probability for creating such a kink on 
a wall can be written as 

Pnucl = e x p ( - - 2 J )  (36) 

Flipping the neighborhood spin now costs no energy, so that this kink per- 
forms a symmetric random walk on the wall. Let PL denote the probability 
to reach L, starting from 1. This is given by the probability of reaching 
L - 1, PL-  1 times the probabili ty of not reaching zero, starting from L -  1 : 

pL = pL_l(1  - p L )  = 
1 1 1 

since p l  = -  (37) 
1 + 1/pL_ l - L  L 
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Since there are  four  spins on the edges of the wall, the mean  rate  of 
d i sp lacement  of the wall  can be wri t ten as 

4 
P = Z exp( - 2J)  (38) 

and we get a g rowth  law for the mean  d o m a i n  size at  low tempera tu res  

16re 
I(t) = (dt)  ~/2 with diffusion cons tan t  d = - - ~ - e x p  ( - 2 J )  (39) 

F o r  t empera tu res  a p p r o a c h i n g  T c  the diffusion coefficient of the wall 
should  exhibi t  an a lgebra ic  d ivergence 

d oc ( J - J c )  -y  (40) 

with y = 3/2 in mean  field theory.  In  Fig. 10 we show L times the diffusion 
coefficient of the wall  measu red  by l l ( t ) : d l ,  respectively 12( t ) :d : .  The 
b r o k e n  curve is the p red ic ted  Arrhenius- l ike  behav io r  for low t empera tu res  
and nicely describes the data .  The  s t ra ight  line for t empera tu res  closer to 
T c  is a fit to an a lgebra ic  divergence with an exponen t  y = 0.69. The er ror  
in the diffusion cons tan ts  measured  for these t empera tu res  is ra ther  large, 
however ,  because  there is only  a shor t  t ime regime between the two-d imen-  

I00 "% 

"e.j 10 0 L d~ " " ' ~ q " ~  

[] Ld 2 

- -  16n exp(2J) 
. . . .  10/o.69 

1 

0.01 0.10 1.00 10.00 
(J-Jc)/Jc 

Fig. 10. Diffusion coefficient of a domain wall times the width of the strip as a function of 
the distance to the critical point. As the 1/L dependence of the diffusion coefficient is factored 
out explicitly, the plot contains data for different strip widths. Open circles are the diffusion 
coefficient from l~(t) measurements, open squares are from 12(t). The full curve is the predicted 
Arrhenius behavior at low temperatures. The dashed curve is the fit of an algebraic 
dependence for temperatures close to T c. 
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sional growth and the asymptotic approach to equilibrium where the 
domain wall diffusion can be measured. Thus the exponent should be only 
taken as proving non-mean-field behavior and is no prediction for the Ising 
exponent that is to be expected approaching Tc. 

We have already shown in Fig. 8 that the domain size distribution as 
seen in the Ising simulation can be perfectly described by an ARW with a 
finite domain wall thickness. Let us now have a look at the pair correlation 
function along the strip. The equivalence of the ARW to the kinetic Ising 
model at T =  0 (26-28) gives a prediction for the pair correlation function of 
the Ising model along the strip when lengths are measured in units of the 
mean domain size, 

G(x,t)=er'c~(l--~) (41) 

To test this equivalence we compare the simulation results in the lsing 
model for M =  1000, L = 10, T =  0.5Tc, and t = 2000 MCS with a mean 
domain size of ( 1 ) =  55.6 with a simulation of an ARW with a wall thick- 
ness A = 4 at a number of walker steps where the mean domain size in the 
ARW simulation is ( l ) = 5 0 . 5 .  Figure 11 shows the perfect agreement 
between the two models if lengths and times are scaled according to 
Eq. (41). To continue the information on the structural properties during 
the ordering process, let us now look at the dynamic structure factor in 
the quasi-one-dimensional time regime. Figure 12 shows a scaling plot of 

I ~  0 Simu 
[~ ARW ext 

0.8 

0.6 

(.9 
0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 .6 

~V2x/l~ 

Fig. 1 l. Spin pair correlation function of the Ising system (circles) compared to the behavior 
of an ARW with finite domain wall thickness (squares). The full curve is the prediction for 
an ARW of point particles (ARW asympt). 



2 2 8  M ~ i l l e r  a n d  P a u l  

. . . , . , . , �9 . , . . �9 : 

1.0 ' ' o T = 0 . 9 1 T  c 

'~ [] T = 0.83 T c 
0.8 "~\  r T = 0.67 T c 

6~ " T = 0.5 T~ 

d o',,~ - -  ARW 
~. 0.6 ' I i  . . . . .  EQU 

~.~ 0.4 
or) 

0.2 ""O-. 

0 . 0 -  ' . . . .  ' ~ ' ' ~ ' ~  
0.0 1.0 2.0 3.0 4.0 5.0 

q/Aq 

Fig. 12. Scaling plot for the dynamic structure factor in the one-dimensional growth regime. 
The three lower temperatures nicely follow the prediction for the ARW (full curve). For the 
time used in the plot the system with highest temperature is already close to equilibrium, as 
a comparison with the Ornstein-Zernicke prediction shows (broken curve), and is therefore 
not describable by the self-similar growth in the ARW. 

the dynamic structure factor at q• =0 ,  where we have taken 1/Aqil(t ) as 
the relevant length scale measurement. The data at the lower temperatures 
show a nice scaling behavior in perfect accord with the analytic prediction 
of the ARW. For  the temperature closer to T c and the considered time the 
system already approaches equilibrium and we see a behavior describable 
by the Ornstein-Zernicke function also incluced in the figure. 

To complete our proof  that the ARW is the correct description of the 
ordering kinetics in the quasi-one-dimensional Ising model we will finally 
use a prediction of the ARW for the case where one starts with a finite 
initial magnetization m ( 0 ) r  We prepare one system with M = 2 8 0 0 ,  
L =  7, T=O.5Tc  and an initial probability of plus spins of Pinitial = 0.5 
(system I) and another with Pinitial=0.6 (system II). According to the 
ARW, the ratio of the diffusion coefficients for the domain walls in the two 
systems should be equal to 

di 
- ( 1 - r h  2) (42) 

dn 

where ~ is the magnetization at the beginning of the one-dimensional 
behavior. Note that we will have a two-dimensional ordering at the beginning 
where the magnetization changes from the initial one. We measure a ratio 
dz/du=0.25,  which means r~=  1/,,f2. Figure 13 shows the initial time 
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Fig. 13. 
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Ratio of the mean overall magnetization to that inside a domain denoted as rh, and 
its approach to the predicted saturation value of 1/~,/-~ ~ 0.707. 

dependence  of rh and  its s a tu ra t ion  at  the value pred ic ted  by the ARW.  
Dur ing  the one-d imens iona l  o rder ing  the mean  magne t i za t ion  in the 
system should  then be cons tan t  and  the mean  squared  magne t i za t ion  
should  grow like (we take  the mean  magne t i za t ion  inside a d o m a i n  to be 
mr= 1) (28) 

2 _ rh2) 2 ( m 2 ( t ) )  = rh2 + ~ n  (1 ( l( t))  (43) 
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Fig. 14. Scaling plot of the domain size distribution for the majority domains. The scaling 
variable is x = l / ( l ) .  Times are t=425MCS (circles), t=l150MCS (squares), and 
t = 1627 MCS (diamonds). 
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The constancy of the mean magnetization can be understood as follows: 

1 
( m ( t ) )  = 

2 ( l ( t ) )  
[-(/(/))max-- ( l ( t ) )mini  

t 
[Pmax(/, t ) -  Pmin(l, t)]  (44) 

= f dxEgmax(X ) --gmin(X)]X =/~t (45) 

where we have substituted x = l / ( l ( t ) )  and assumed independent scaling 
behavior for the majority as well as the minority domains: 

emax(l, t ) - - - - -  

emin(/~ t ) -  

<z(t)) gmax 

(l(t) ) gmin 

(46) 

This means that the mean size of the majority domains as well as that 
of the minority domains grow in time, leaving the mean magnetization 
constant. Figures 14 and 15 show this scaling behavior for the system II  
and the majority and minority domains, respectively. Figure 16, finally, is 
a comparison of the distribution functions of the majority and minority 
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Fig. 15. Scaling plot of the domain size distribution for the minority domains. The scaling 
variable is x=l/(l). Times are t=425MCS (circles), t=llSOMCS (squares), and 
t = 1627 MCS (diamonds). 
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Fig. 16. Comparison of the scaling functions for the majority and minoritydomains in the 
Ising model and in the ARW. The data for the Ising model are those for t = 1627 MCS from 
Figs. 14 and 15 (minority: open squares; majority: open circles). Those for the ARW are for 
a simulation time of 100 walker steps (minority: full squares; majority: full circles), which has 
a comparable mean domain size. 

domains in the Ising model and in the ARW. The choice of times used in 
the comparison is again given by the requirement that the mean domain 
size in the two models should be equal for those times. 

7. C O N C L U S I O N S  

We have studied the ordering kinetics in an Ising strip with free bound- 
aries in the short direction and periodic boundaries in the long direction. 
The kinetics show a crossover from two-dimensional to one-dimensional 
behavior. We have defined several quantities that measure the length scale 
over which the ordering has proceeded and which are applicable in the 
two-dimensional regime and quasi-one-dimensional regime ( ( m  2) and 
1/Aqll) or in the quasi-one-dimensional regime only (ll and 12). All the 
length scales show the ordering process to be purely diffusive in nature, and 
starting at times where one can identify domain walls running across the 
terrace, one can describe the complete spatiotemporal behavior of the 
ordering process in terms of an annihilating random walk of domain walls. 
The possibility of a logarithmic growth law for the mean domain size in the 
crossover region between two-dimensional and one-dimensional growth 
can be ruled out. This is in contrast to the picture of Kawasaki  and 
co-workers describing the ordering as the dynamics of kinks and anti-kinks 
interacting with an exponentially decreasing strength when one neglects the 
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stochastic forces. Our discussion of the mean-field-like approximation of 
the kinetics showed that this can be due to a principal difference between 
a discrete system with strictly finite interaction range and a continuum 
approximation where an interaction of infinite range is produced. 
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